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SECTION I

REPORT SUMARY

High electric fields are obviously advantageous in powerful

electron accelerators: for a given energy gain per particle, the device

length is inversely proportional to the maximum field; and the maximum

current is roughly proportional to the field. The transverse RF accelerator

provides a high field strength by using an accelerator cavity analogous

to an optical resonator: the focussing of electromagnetic energy produces

large fields along the cavity axis for manageable fields at the wall. In

addition, it is possible to have the fields largely transverse, permitting

very high accelerating gradients. This report discusses two basic topics:

the field structure as related to the acceleration mechanism, and limita-

tions on the electric field strengthM- Important aspects that are not part

of the research objectives are the accelerator power requirements, the effects

of cavity loading, and other phenomena.

The accelerator cavity can be conceptually generated from a

linear optical resonator as shown in Figure la. The resonator is then

rotated about an axis in the focal plane, to give the cylindrical resonator

of Figure lb. This configuration gives large intensities in the shaded

region, from the combined effect of axial focussing already present in

Figure la, and the radial focussing introduced by the rotation. Finally,

the accelerator cavity, in Figure 1c, is extended axially to allow wave-

lengths comparable to cavity dimensions.
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The electromagnetic cavity modes suitable for electron acceleration

have a purely azimuthal magnetic field, and an mostly axial electric field.

The modes can be found exactly. However, in the interesting

parameter region the modes are close to the well-known higher order

Hermite-Gaussian optical resonator modes shown in Figure 2a. The electric

field direction during one half-cycle is as given in Figure 2b, and is

reversed in the other half-cycle. The field is obviously cylindrically

symmetric, and extends out to the cavity wall.

The accelerator process is illustrated in Figure 3. As an

electron enters the first lobe in the spatial field pattern, Figure 3a

the field points opposite to the electron velocity, and the negatively

charged electron increases its momentum (but not its velocity) during the

first half-cycle of the field o<wt<7r . At Wt = Tr the field

reverses, and the situation is as given in Figure 3b: at this time the

electron shown has not yet left the first spatial lobe, and it loses momentum.

Again, the electron's velocity remains constant, so that a short time

e/w later the electron enters the middle lobe, (Figure 3c), where

it is again accelerated until it leaves this lobe or wt reaches 2r ,

whichever is first. At this point there might be another momentum decrease,

but it is obvious that the net effect of the various accelerations and

decelerations is a net energy gain AE of order 6E = eEp L/2

where Ep is atypical field strength, and L is the width of the

spatial pattern as indicated in Figure 3c. From the discussion it is

clear that the acceleration process is, basically, resonant wave-particle

interaction with an approximately sinusoidal wave. The calculated energy

transfer is shown in Figure 4.

The accelerating field strength is intrinsically limited by the

allowable field at the cavity wall. The normal field component will be

limited by electric breakdown to 30 MeV/m or so, but the parallel

1-2

.4



component should be up to the skin current heating limit of = 109 V/m (the

estimate is justified in Appendix ). Therefore it is necessary to know

the direction of the field at the wall, and to select a cavity geometry or

accelerator operating regime where the electric field is mainly parallel to

the wall. A simple argument for the field direction gives Ei/E a = /t ,

where A = w/c is the free space wavelength and £1I is a typical length

scale of the field pattern on the wall (see Appendix II).

The above estimate indicates that the large wall fields predicted

for the transverse RF accelerator are obtainable when the free-space wave-

length is small compared to the wavelength of the fields on the wall. This

is assured if the cavity is used with a high mode number in the radial

direction, or a high frequency. An approximate formula is given in

Appendix III.

The transverse accelerator research reported on here concentrated

on these topics. To summarize:

i) use of laser-like higher order cavity modes

in approximate resonance with relativistic electrons,

and

ii) the ability to make the electric fields at the wall

largely transverse, leading to very high field

gradients, and

iii) accelerating electric fields in the center that are

enhanced by radial focussing.

The qualitative description given above is substantiated by the

analyses in the appendices. Here we give briefly their conclusions.
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Appendix I derives the limit to the parallel electric field

E1  109 V/m , by balancing the Joule heating due to skin currents with

the conductive heat transfer into the cavity walls.

The exact expressions for the accelerator cavity modes are given

in Appendix II. The modes consist of a single magnetic field component,

B (r,z) , which is a product of the axial and spheroidal wave function.

The electric field has an axial and radial component given by the curl of

B0  (times c2/iw) . Exact expressions can then be written down for the
quantities of interest, e.g. E1 ,wall/E laxis , the cavity loading, the

total energy in the cavity, etc.

The other appendices work out some of the details in the

formulation, and/or contain numerical evaluations. Appendix III gives the

field ratio E1/El  in terms of axial mode number, and cavity frequency

and shape.

Appendix IV derives the electron acceleration, and does the

emittance calculation. Here the fields are approximated by their Gaussian-

Hermite form. The energy gain is again a Gaussian-Hermite function of the

frequency w!I . The transverse momentum transfer on axis vanishes by

symmetry, but the maximum transverse momentum gain, at about X/4 off-
axis, is of the same order as the parallel gain: therefore the radial

bunch width should be small compared to a wavelenth.

Finally, Appendix V is a compendium of mathematical formulae that

were found useful in the course of the analysis. One item may be interesting,

namely a numerical comparison of the spheroidal functions with the various

approximations used throughout. Appendix VI is a collection of miscellaneous

physics results, and Appendix VII treats open cavities.
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The overall conclusion from these analyses, and especially from

numerical evaluations at MRC in Appendix VIII (,MRC-N-1S6) is that the

transverse RF accelerator's performance is limited by the ratio

AE/eEi L : 0.5 - 1.0 . (1)

Here AE is the energy transfer to the electrons, L the cavity length, and

E1 a typical normal wall field. This value is comparable to that obtained

in conventional cavities, and there appears to be no advantage in using

cavities generated by extending optical resonators to the microwave regime.

Although we know of no fundamental limitations indicating that

Equation (1) is a fundamental limit for all cavities, possibly with some

factor of order unity, it appears for the moment that the decisive way to

improve the accelerating gradient is to increase the breakdown limit to Ej.

No detailed analysis has yet been made for purely propagating

modes that are geometrically focussed down to a small focal region. This

way one has a handle on the spatial field pattern on the wall, through

the placement of the emitters on the wall. Therefore, the field direction,

E1 /E1, (with E1i at X/4 away from the wall) is under control.

Using a forced mode instead of a cavity eigenmode allows one to

select a frequency relatively independent from the field pattern on the

wall. Therefore, the coupling to the particles can be somewhat influenced

because the coupling partially determined by the field frequency.

If the search for a large coupling together with small normal

wall fields continues to give hegative results, we must conclude that the

desired increase in accelerating gradient should be sought elsewhere, for

example by increasing the breakdown limit by more suitable wall materials,

or local magnetic insulation..
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APPENDIX I

TRANSVERSE RF PEAK FIELD STRENGTH ESTIMATES

The peak electric field strength E normal to a conducting surface

is typically on the order of 107 volts per meter. This value is set by
breakdown due to electron emission and/or particle bombardment. Larger EIIs
are possible, for example, by magnetically insulating the conducting surface

in the high gradient region with a parallel magnetic field perpendicular to
the electric field. The accelerating gradient of particle accelerators using

normal fields is comparable to eE1X: any technology that increases the
attainable E 's could have an impact on the maximum acceleration.

However, it is also possible to produce an accelerator with high

magnetic fields strengths B, parallel to the wall, and negligible
normal electric field components. This may be accomplished by utilizing

mirrors to reflect a travelling wave, as is common practice in laser work.
The wave direction is normal to the wall, and the magnetic field (and the
accompanying electric field) is perpendicular to the propagation direction.

Normal reflection from a good conductor results in a very small
electric field at the surface, since the reflected wave interferes destruc-
tively with the incoming wave at the conducting surface. The failure

mechanism for such a surface is different from that of electric
breakdown. For the regime of interest, failure is due to the surface layer
heating by the currents induced by the incoming wave. This is known
as the skin depth effect, since the electric and magnetic fields only pene-
trate approximately one skin depth. This failure mechanism scales with
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frequency and conductivity of the reflector; it also depends on the heat

transfer rate from the skin depth layer to the interior.

The reflecting power for normal incidence on a plane conducting

surface is R = 1 - S ; Here S is, approximately,

16'r cov

where v is the frequency (in Hz) and a the electrical conductivity

(in (fbt}- ). The energy per surface area absorbed in the conductor is equal

to S, times the average electric density 4coIE p 2 (Ep is the peak

field strength, in V/m), and the pulse length T times the light
P

speed c.

The conductivity of copper is function of temperature is shown in

Figure 1. The conductivity changes one order of magnitude from room tempera-

ture T = 3000K to the melting point at about 1000K. A reasonable average

value over this temperature range is o = 3 x 10 7bu)- . The conductivity

could be increased by an order of magnitude when the mirrors are cold, 10K

say, at the beginning of the electric field buildup.

The energy is deposited as heat over one electrical skin depth,

6e

the heat diffuses inward over a characteristic distance

8th = I pl Cv "

where A is the thermal conductivity, and cv  is the heat capacity at

constant volume. For copper at room temperature the thermal conductivity is
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A = 400 (jm-1 sec K -), the heat capacity cv  3.S x 106 (JM-3 oK- ).

For oscillating heat load a "thermal skin depth" can be defined in analogy

to the electrical skin depth. Setting t = 2/Tp,

th =

the numerical value for copper at room temperature is about 10.

Since the thermal skin depth is an order of magnitude smaller than

the electrical skin depth, there will be little influence from heat diffusion

over a typical oscillation timescale T = 2f/w. After about 100 oscilla-

tions, however, the heat conduction starts to come in, and for 
even longer

times the heat conduction dominates. The frequency and pulse width envisioned

for the RF cavity is about 1GHz and T = 10-6 sec, or about 1000 oscilla-

tions. Hence it is marginally reasonable to assume that heat conduction can

spread the heat over the thermal diffusion length 
6th =A /lrTc-r

th v p

Mirror failure is defined by the melting of the reflector. This

occurs when the input energy has increased the mirror temperature to the

melting point, about 10 3K for copper. Therefore, the peak field is

limited by

-- 4 -o]E CV11 = cv AT ic _ ,

4~ C0,E jZ CTP (7" V A vT>

where AT is the temperature increase. Inserting the numerical values leads

to

9 1
E 3x 10 (TV) (V/r)
p p c.

Some limitations of the above analysis are obvious: the neglect of

the spatial dependence exp - 2x/6 in the heat generation, the assumption
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that the heat is spread out evenly over a thermal diffusion length, and the

decrease of conductivity with increasing temperature all tend to increase the

peak field estimate. The assumption that the peak field is attained instan-

taneously instead of increasing linearly with time decreases the estimate.

A working estimate for our purposes will be

E = 109 (TpV) - 3 V/M

Data from laser mirror failure tend to corroborate the above estimate.

A more complete analysis would use the heat diffusion equation

2

v ae 2o(T) exp - 2/6 e(T) + T)

analytic solution of this equation is not possible except under simplifying

assumptions3 (a constant, etc) similar to the ones made above.
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APPENDIX II

ELECTROMAGNETIC FIELDS IN ELLIPSOIDAL CAVITY

The electromagnetic fields envisioned in the transverse RF

accelerator have the electric vector mainly parallel to the cavity axis,

while the magnetic field is roughly perpendicular to the axis. These

conditions are satisfied by one case that is exactly solvable, namely

the purely solenoidal oscillations mentioned by Meixner, (Reference 1,

Sections 4.41 and 4.43). The particular case where all fields can be

derived from one magnetic field component B (see Figure 1) will now

be discussed.

Maxwell's equations in vacuum are

Vxa* (la)
at

V x B = po 2 + I (ib)

here j is the current density, and all quantities are in MKS units. It

is simpler to work with a system where various factors c are absorbed:

defining.

B' = CB , = U0cj (2)

and dropping the primes, equation (1) becomes

St - Ia(3a)

M6 (3b)
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These equations can be combined into

1  ;2BV x V x B = V x J- - (4)

The free oscillations of the ellipsoidal resonator are obtained

by setting J = 0 and assuming a harmonic time dependence exp - iwt.

V x V x B = k2 B (5)

with k = w/c, and with the boundary condition that the electric field

parallel to the cavity wall be zero.

In an arbitrary orthogonal curvilinear coordinate system,

equation (5) for the B3 component of the magnetic field becomes:

hhh2 k
2B, + h2 - h3B3 + a hi a h3BS= O. (6)hq1 h3h1 3q, aq2 h2h3 aq2

For prolate ellipsoidal coordinates (see Figure 2), where

qi = n, q 2=
= , q3=

x r cos *, y = r sin, , (7)

r . (1-r12)' W-ul)

f

2

where f is the focal distance, the coordinates and scale factors are

' 2 Q n (8)

f f (ln2) /(C2 'l)
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Then equation (6) becomes

(kf)Y (& 2 -n2 ) B3+ (1-n 2)1 T,2__1- 2) 3 (&2_1)l 2 &_ =8 0, (9)

which is clearly separable, but a non-standard form of the spheroidal

equation. With the relation (equation for )

E __)1 2E B3B 3  (0

I1)(-) 3- (10)

one obtains the spheroidal wave equation for m=1

W-1) + (1-n ) a + (&2 -n 2)f 2 1 JB- = 0. (I11)

Hence the exact solution is given as a product of two spheroidal wave

functions and their derivatives:

8(El) = const. RIn (h,Q) SIn (h,n) , (12)

where h is the parameter

h kf (13)
2

The electric field component parallel to the cavity wall
C -o uconstant, is En

i 1 r

E I Bq,(14)

the boundary dondition is that..Eq = 0, hence a somewhat complicated

condition on the zeroes of the first derivative of the radial spheriodal

function, as will be seen below. Numerical work appears to be necessary

for firm results. The normal electric field is
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Ea

These formulas give the exact fields in an ellipsoidal cavity.

An attractive feature in the transverse RF accelerator
is the reduction of normal electric field at the wall & = &o compared

to the maximum field strength that accelerates the particles along the

z-axis at = 1. Therefore one should evaluate the maximum

2_~0  2 a 2
R .ln (h'%i max ,(16)

E nIE.l max.rI i12)
n S n(h,rl) J ma -. R (h,)]n n m a x 3& I n o

in addition to the energy transfer to accelerated particles given,

essentially, by the Fourier transform of equation 14.

Before continuing with the exact formulas (14)-(16), a few

remarks are in order.

i. The derivation of equation 11 is not elegant: another

derivation is as follows, Consider the relation (problem 13.7 of

Reference 6)

r (17)

where is the unit vector in the azimuthal direction, and P=4(rz) is

rotationally symmetric. (This relation is easily verified in cylindrical

coordinates).. The -/r 2  term can be conceptually generated from the

azimuthal mode u cos * (rni) in the Laplacian. Hence equation (11)

follows directly.

3-4



ii. The functions Un(n) n (l-T12PSln(h, n) and

V n() = (&2_1)1 RIn(h,E) are entire functions: in particular near

&,i= I there are no singularities. For numerical purposes it may be
nicer to integrate the differential equations for and V in a

nn
search for the correct boundard condition En = 0. The appropriate
equation is a separated version of equation 9.

n2  n ( 2-h2 n 2)U = 0 (18a)

an2

and the same equation for V (). The boundary condition En 0 is

now

avn I

(18b)

The eigenvalue A n = XIn is the one from the usual spheroidal

equation, and they are known, (eg. Reference 3, Page 29, reproduced in

Table 1). The resonance frequencies are probably given in Reference 4,

but this referefice is not easily assessible.

The simpler estimates performed in the initial stages of the

field and energy transfer calculations, (eg. Reference S) compare

favorably to the exact electromagnetic fields given above, and to the

energy transfer calculations that follow. First, let us determine the

frequency from the boundary condition, E = 0 ; with equation (14),

RIn (hC)] = 0 (19)

in a future numerical calculation we will solve for the frequency parameter

h - h (C as function of axial mode number n and cavity wall

location 0o Here the WKB approximation given in Reference 1, Section 3.91,

will be used. Approximately,
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where J1 is the Bessel function of first order,

s = s(h,n;Q = h ~2l- arc cos &- % r -i2~ (20b)2 16h

and q = 2n-1. The factor (s/s ) is a slowly varying fu~nction of

~, viz.

2 -+ q arc cos
s -1 1 6h 2& 2h V V2- (21)

2hC 16h'

for C>>1 this becomes approximately s/si ' Therefore it is

reasonable to ignore this factor in (20a) . The boundary condition E n= 0

then yields the result

s = 31't(22)

or approximately, neglecting the last term

h-hm -(E2-l)" (j+ 2-- arc cos C ) ,(23a)

Not neglecting the last term gives h1 = (h1  2~ 2q +3/f

Here N.= corresponds to a'half-wave cavity, and 1 2 to a 3/2-wave

cavity.
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The exact electric field along the axis is

E= E N (1_r 2 )- S n(h,n) , (24)

where E is the peak field value, and N is a normalization constant.p n

Asymptotically, for h>>l, in a region of width h0 about zero7

En = Ep Nn  Hr (nq/-) exp - h n2 /2 (25)

where r = n-1 (in general, Smn -H nm)

The previous estimates of the energy transfer were based on

equation (25), but with r = n; however, in that case the frequency

estimate, hes was given by

he) Jo +  2 arc cos (26a)

Hence for a corresponding field pattern, n in equation (26) should be re-

placed by n-i; then the difference between equations (23) and (26a) is

Ah X = ' Jo - it (26b)

the first two values are Ah, = 0.56 and Ah2 = 0.19, for a relative

change in frequency Ah/h less than about 10%. The conclusion here is

that the energy transfer as computed previously is consistent with a parallel

compulation using the more accurate vector electric fields.

A conclusive energy transfer calculation must be done with accurate

numerical data on the spheroidal functions, and their zeroes. These

calculations are underway, but for the moment it is reasonable to trust the

previous energy transfer rates. It should be mentioned, however, that the

approximation to the axial spheroidal function Snl " n_1 exp . . . is not

strictly valid 7 in the region of exponential decrease jnv>>I, and this

fact could effect the energy transfer calculation.



Ei at the cavity wall.

An important quantity is the normal field at the cavity wall.

Elsewhere it is shown that the parallel electric field, or rather the

equivalent magnetic field at the wall, can be up to 109 V/m, while

electrical breakdown sets 'in at 30 times lower values, approximately

3 x 107 V/m. Therefore it is important that E /E// be small.

The ratio between the normal field at the wall and the parallel

field along the axis is given by equation (16). This formula is being

evaluated, and the results will be given in another appendix: here an

estimate of EI /E will be given with simple physical considerations.

Namely the existence of a spatial magnetic field pattern on the cavity

wall leads to a comparable surface current pattern, hence to a surface

charge density which finally generates the normal field.

Figure 3 gives the accelerating cavity with the directions-of

the main field components E along the axis, and BO in the

midplane parallel to the cavity wall. The surface current J induced

in the wall is approximately given by

B 0 0J  (27)

found by integrating the magnetic field along the sides of the rectangle

given in Figure 4a. The spatial dependence of the B, B (n) gives the

charge accumulation Q in the cube of Figure 4b:

do1W (28)

here L// is a-typical length scale in the variation of BO,
0 is the surface charge, and " W-1 is a typical time scale. The

surface charge gives the normal Plectric field according to

E .' - • (29)
0
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The normal electric field at the cavity wall El  , compared to the

peak parallel electric field )/ away from the wall, E c B

E /E I  = (E k) I

where k = w/c is the free-space wavenumber.

The above estimate shows that the large fields predicted for the

transverse RF accelerator are obtainable when the free-space wavelength

is small compared to the wavelength of the fields on the wall.

The accelerating field along the axis in the cavity center is

the parallel field at the wall times an additional radial factor 4R/A

where R is the cavity radius and X is the wavelength. The

magnetic field B0  goes with radius r roughly as I/r because

B.d_- = 2z r B0 (r) is a constant, for each integration path along the

maximum of B The electric field in the center is roughly equal to

cB along the smallest integration path encircling the center, at

r = A/4 . Therefore the normal field at the wall E is, compared

to the accelerating field EN on axis,

EA/EI = X2 /8ni IR (31)

Therefore the breakdown limitation can be avoided by using wavelengths

short compared to the cavity dimensions. An estimate based on the exact

formula (16), gives elesewhere, is in general agreement with (31).
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CAVITY LOADING

The electron beam that is accelerated by a particular externally

excited cavity mode can itself excite other cavity modes. These modes, once

built up to large amplitudes, have their own, probably deleterious,

influence on the accelerating beam. The mode excitation due to a prescribed

electron beam is given in the sequel. -

Various important simplications are made. The beam electrons

are relativistic, and therefore they keep their velocity approximately

constant, equal to the light speed c. This approximation necessarily ignores

any radiation from beam acceleration; most of the radiation is peaked in the

forward direction, and will escape from the cavity. It will be treated in a

separate calculation.

The beam is supposed to be injected into the cavity along the

z-axis, preserving the azimuthal symmetry already imposed on the

accelerating mode. Then the magnetic field generated by the beam current

will be in the same direction as the cavity mode field, namely the

azimuthal direction.

The above considerations allow simplification of the full

inhomogeneous vector wave equation to an inhomogeneous scalar wave equation

for the magnetic field B = e b (See equation 17 sqq.)

-1b

V~b 1 b - 3 C, (32)
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where e is the unit vector in the azimuthal direction, and C is

the - component of the curl of the current source term,

e C(X,t) = 1i c V x e j(x,t) (33)

where j(x,t) is the current density. A reasonable functional form

for the n'th election bunch is

I [
J(X,t) = exp (- -ct)2 /2L2 ( (34)

where Ip is the peak current, Lr  is a typical width in the radial

direction, zn  is the center of the particle bunch along the cavity

axis, with a typical bunch length L . It is easy to verify that

Vxj 's only component indeed points in the e - direction.

A suitable set 4P of real eigenfunctions for the cavity is
n

found above. The inhomogeneous equation (32) is then solved by

b (xt) = f G(x,t;xo ,t0) C(Z ,to) , (34)

where the Green's function G can be expanded in terms of the eigen-

functions (e.g. Reference 6, equation 7.3.24)

t

b = C2  4j ~(X)/W. f dt sin (tto) ] JdV ,(x ) C(xt (35)

Here the sumnation is over all indices of the eigenfunctions, for the cavity

j =(n,t)
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These expressions basically say that each mode Pn is excited

by the source C with a coupling strength that depends on the spatial

overlap of the mode with the source, and on the temporal overlap. All I:

that is left to do is to evaluate these overlap integrals explicitly.

When this is done one can go back and consider the effect of these beam-

excited modes on the beam itself.

In the evaluation are needed the explicit forms of the

eigenfunctions, the current, and the frequencies. The eigenfunctions are

given in equation (11):

j( = Ant Sn (h,n) Rin (hnt,) (36)

where A is the normalization constant. I'

h is the eigenvalue, related to the frequency by h = its

indices (h S h ln) are omitted. The eigenvalue satisfies

0 [W-I) 3 (hnF (37)0 =ni)

The source C(x 0 ,to) in spheroidal coordinates is

Ct) 0- c V ) exp- TI-c2 /,

(R)- (,2l) (l-2)22L] (38)

Notice that-this formula is for one electron bunch only: for N bunches

there is another summation over bunches, indexed by j, say: C -2. C.
1 J
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With these expressions it is, in principle, possible to evaluate

equation (35); howeyer, the calculations are terribly messy and they are

not performed now. Instead, we make the following physical arguments in

an attempt to search an acceptable conclusion.

The first observation is that the spatial overlap integral can

be approximated in two limits, one in which a typical length scale of the

eigenfunctions is much larger than the scale of the charge bunch; the

other limit applies when the opposite is true. These are the low and high

mode number cases, respectively. In the first case the integral is

approximately constant, in the second case-the integral is zero. The

upshot here is that only a finite number of modes is coupled to the

source and that the coupling constants are all of the same order. In

this connection, notice that the normalization constant is of order

(peak value of the function x integration interval)2/,, hence that

the normalization and peak value cancel each other, except perhaps for

some dependence on the integration interval in the normalization.

It is a different story for the time integration. Here the

coupling involves, mainly,

ttsin [C) (t-t ep- nc 2,2lP (9
ex f - z~c)/2 ~ (9

which can be large only when the correct bunch spacings nj-l-nj
relative to the frequency of the accelerating mode are obtained. Otherwise,

the integrand in (39) will be oscillatory, and vanish when integrated over

many bunches: one bunch may excite a mode to a certain, small, amplitude,

but the next bunch, or a bunch a few further down the line, will take the

energy from this mode: the net result is little excitation of extraneous

modes.
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The above scenario is reasonable if the frequencies are

incommensurate. This is highly likely, but untested at the moment. The

best estimate gives for the frequency a linear expression in terms of

Bessel functions zeroes: these are certainly incommensurate.

Our conclusion is that modes other than the accelerating mode

can be excited in the cavity, but that these modes remain at a relatively

low level. Therefore they will have a minor effect on particle acceleration

in the transverse RF accelerator.
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Further Analytical Estimates.

The total electromagnetic energy VI in the cavity can be

easily estimated as

-- E2V

times a geometrical factor; E is the peak field, V is the volume.P

The geometrical factor of order unity must be evaluated using the particulars

of each cavity. Remember that in radiation field the time-averaged

electric and magnetic field energies are-equal,

e fI.[Ei2 dV = I- fI[B2 dV , (40)

and therefore it is sufficient to evaluate the least cumbersome of these

expressions.

The maximum magnetic field energy, equal to the total

E-M energy W, becomes in spheroidal coorinates:

W = B2 N2  d& dn (&2 -ni2) s2 (hIn) (hRI , (41)
2 2 0 p p innnt

1 -I

Here Bp is the peak magnetic field, and the double integral with

henceforth be denoted by I. N is a normalization constant to beP
discussed later Equation (41) clearly displays the expected form, an

energy density Bp2/24o times a volume (for a confocal cavity, the

diameter is equal to the focal distance f, hence in this case

V - fs), times a geometrical factor given by the remaining

factors.

The double integral can be split in two terms with
&2-n (FW l) * (1-n2)

3-IS
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01
I fd R (&2 1) R2 Jd (r 2) S2 (h,) (2

+Jdri R~ 2~ 1 2n(,n (43)

Note that this normalization differs from the one used by others, eg.

(ne. ) (n-l)n

these notational difficulties are a recurring nuisance. The remaining

nj integral is

Jdri (1-n) Smn(hl) = n (44
-1

where A n is the eigenvalue in the spheroidal differential equation

[ (1-n 2 ) A- + q (Aih2,rl;m] S~ (hTi) = 0 (45a)

where

q-A~ +*h2 (1-n2) -m (45b)

Series for A n in powers of h 2  are well-known and

this fact nakes'relation (44) useful. Its proof is simple: multiply

equation (4Sa) for ho with Sm (h I n) belonging to h2 - h 2 +Ah2,

interchange the subscript 0 and 1, subtract and integrate over the

interval [-1.] .The result is
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0 (Ah 2) fdr [q(A.h 29n;M) - q(Aih nr; M)] S(h,n) S.(h I n) ; (46)

Taking the limit Ah-_o gives

fi qS2 (h,n) = 0 (47a)

which is -iquation 44 when using the explicit form for q, equation 45b.

The eigenvalue Am in Table 1 is related to A by

h h2 _X ; hence equation (44) becomes

mnmnah

mnn

(or derivatives thereof), equation (48) becomes unity, in agreement with

Table 1.

The integrals over the radial coordinates E0 satisfy a

'relation of the same form, but with an extra term:

3A~

dc WE-1) R~ (h.E) =3 1  + e I (49a

This last term is related to the non-zero boundary condition on Rin.

This term can be written another way. A change in the parameter

h (frequency) implies a different coordinate go ZC (02) where

E vanishes (see equation 19).

Then 3/3h2 can be replaced by 3&0/h 2 x a/g and the

second derivative becomes, 82/3E2  :This in turn, can be re-written

with equation (10). The result is
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- amn 3%(h2) "- 0 Rn (h,r (49b)
mn3M2 (4ahb =o

The integral I (equation 42) becomes simply

I = lnt , (SOa)

and the total E-M energy in the cavity is

W_=__ B2 N2 12 (SOb)
( 1Y ]o p p Int

The final ingredient in this formula is the normalization constant

N (and the numerical evaluation of equation 49b).P

The normalization constant N for the magnetic field is
P

defined by

BO = Bp Np Rln Sin

where Bp is the peak value of the magnetic field, and Sin and RIn

are normalized to unity according to equation (43), and the corresponding

equation for R. Given this normalization one needs to find the maximum

of SIn (h,) over IrJ <1 and of RIn (h,) over 1<E °

In the axial direction a local maximum occurs at all zeroes

z! of SIn/dn; however, the absolute maximum takes place for the

largest of these; z.1 =max[ (z). This can be easily argued from

WKB-theory. Hence,

Szn (hn) a S  (h,z') (52a)
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where z9 is the largest zero of

as n(h,z')
n 0 (2b)

In the radial direction the maximum occurs closest to the center =.

This is evident from the basic 1/r dependence of cylindrical

coordinates, and can also be argued on WKB grounds. Hence,

Rl (h,n) LRan (h, r' n (S3a)
In imax I

where r' is the first zero of
ni

dR n(h,rn'l) (M)

dn

The normalization constant N is then
p

N = rn (hr'l) S (h,z (54)
iN 0 [Rn ni Sin '

The hooker in all this is that the spheroidal functions are not well

tabulated, their zeroes are not well-known, etc. These numerical data

need to be calculated before one can determine the numerical value of

the various quantities such as equations (54) and (16).
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TABLE I

The eigenvalues In for the spheroidal wave

inn

equation as function of the parameters c = h - t-k/2

4  8 124
875 6 5 .6 2 5 f-58,953,125

+ ,5.420
7 1,029 554,631 9,539.098,569

7 152 - 115.568 34,094.936
15 111,375 c' 977.315,625 15,964.450,734,375

2 3 + 2 7 c + 7,064 e 462,736 339,769.051816
77 3 934.929 35,188,194,041 599,396.295,493,692.697

Alb 30 + - c, + 1,108 - 301,160 c 69,222,847,348
39 1.245,699 96,630,117,129 2,052,491,609,859,563,685 c-

55 8, 45,164 495,016 - 5.894,701,468 e,,- 42 + + 8,12 487,682,559,375 2,302,259,141,535,890,625

56 + 109 1,167,376 . 132,492.064 3,149,302,579,970,160 e, 221 2,255,916,949 330,543,719,118,327 c' + 5.406,455,219,158.600,211,866,547
72 7 31,984 e 96.594.016 _' + 16,316,385,212.272

9 ' + 78,021,125 534.442,755,721,875 23,965.276,291,519,365,828,125 C' -.

For general m and n q = 2n - 2m + 1, Y= h

(Meixner & Schafke, Section* 3.25):

2h2 - X (h) = yt+- qq'+ + | -32m'I-
nm . 64y

- - I- ,- [5(q4 + 26q' + 21) - 384m'(9' + 1)) -
10247;'

-- LI [ (33 9'+t |594931" 5621 ,) - & (37q'+ 167q) + "" ]-

yl12 128 +2

SI S (63q + 4940q 4+ 43 327q' + 22470) --256.256

S' 0,15 9 + + 7 5) W +

S1' Tu (527q1 + 61 529gg + 1043 961qt + 2241 599q) -

3 1o24 (5739q" +127550ql 298951 q) +

-4a
+-(355q'+ 1505q)- -q + O,-')
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Figure 1. Transverse RF accelerator cavity.
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APPENDIX III

Normal Fields With Exact Mode Structure

The transverse RF accelerator allows, in principle,

extremely high accelerating gradients because the accelerating electric

fields are mainly parallel to the cavity wall. The parallel field is

then limited by Joule heating to about 109 V/m This value is much

higher than the maximum normal field that can be sustained,

E1 4 3 x 10
7 V/m This section evaluates the exact expression for

the normal field at the wall, compared to the accelerating field along

the cavity axis.

The expression to be calculated is

E wall, max R ln (ho)

faxs, max [Vi h

2 r- h (h))

"nr Slnh' ma()

Sl-TS ln(h,n) max

(Equation 16 of "Electromagnetic fields in Ellipsoidal Cavity"). It

consists of a radial part, with independent variable & , and an axial

part, with variable n Let us consider these factors separately, using
fw

the asymptotic form of R and S for large frequency (h - >> 1)
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The radial eigenmode Rln is approximately

i

where to lowest order in h

s = h VI ,- (2b)

and J is the Bessel function of first order.

The frequency is related to the coordinate o of the wall by

the implicit relation

-* L -1 Rln(h,) =0 . (3)

Using the approximation (2a) this condition takes place approximately when

J'l vanishes, or equivalently, at the maximum of J * In the region

s>> this maximum is simply the dominant term in the asymptotic

expression of J

FJ _ 2 -1 (4)

1 max -- "

The additional factor is

E 2 -1
(S)

0

4-2
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The value of the E-dependent denominator in Equation (1)

can be found in the opposite limit J1 (s) s/2 for S--0

Then

~ RCh, )I = h (6)
InI

hence
R In(h .&) (2 h -/2 Go Y 2 2 _I)-  7

The axial factor can be evaluated from the WKB expression for

the function

Ci-, SIn(h,) = Hn_lf( / h) exp - hnr/2  (8a)

in this expression one can ignore the factor I , at least for

those large values of h for which (8) is valid. The differential

equation for (8) is

C + Q(n,x)g 08b)

where x - / "  , and Q(nx) - 2n-l-x 2

The extremes of the function Sin lie between the turning

points; in fact, the maximum is the local maximum closest to the turning

point. In contrast, the maximum of the derivative occurs in the middle

between the turning points. This can be shown easily from the WKB-

expansion about the turning point, x = xt + AX

Sa " /6 I ' / (9a)

4-



where a - Q/ax at the turning point, and Ai is the Airy

function. The maximum occurs at the maximum of Ai(t) =0.5356 ,at

t =l.003.

The derivative is calculated with the WKB-expression between

turning points:

gnCx) Q Cosf/Tdx] . (9b)

with derivative

The maximum of this is obviously where Q is largest, at x 0

The maximum (9a) becomes, using the turning point x v2-

9 ViFAi(iax) J 1a
n~max 23(n-li) 11

while the maximum of the derivative becomes

. n, max = 2 - k(1 
b

The axial factor becomes finally, using 3/8ri =viF- 3/3x and

setting rj a 0 in the square roots that multiply Sin

I~l.n) S S(h ii) I A i(max) Vg!27iIn I ax

The ratio between normal field at the wall, and accelerating field

4-4



I

along the axis, Equation (1), becomes from (7) and (10):

Eh (o-)% (01)

The coefficient ( Ai (max 0.3

The conclusion from this formula is that the normal fields remain

small compared to the accelerating fields by a combination of high

frequencies h = f
- high axial mode number n and large wall2c '

distance 0 However, none of these factors is clearly dominant,

although increasing the frequency is most effective.

The formula (11) agrees approximately to the previous estimate,

Equation (31) in Appendix I:

El c2  1 (12)
E 2

When Equations (11) and (12) are written in corresponding quantities the dis-
f(A

crepancies become clear. For example, Equation (12) becomes, using h = 2

R = V&21 , and Z the typical wavelength on the axis (Xn- )

times a factor from the projection cn the cavity wall, z. Xl

E n 1
El 4L -1 _ __71E - 4h €o €: (13)

These formulas are in good agreement; the frequency dependencea

is h"  in both, and at least for Eo large the formulas go as 0"

4-S
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1/3
but the axial mode number dependence is n versus n It should

be noted, however, that both Equations (11) and (13) contain various

approximations that might explain part of the discrepancy.

Numerically, it appears that, for Eo =vf

E O.S 2/3
=0.5 (14)El h

1/6 1/3
only a factor n off from (13) but different by n from (11).

The reason is probably that the influence of the axial mode number on the

frequency is entirely neglected in Equation (2b).

The cavity parameters that determine the normal fields at the

wall are the wavelength A compared to the focal distance of the
caviy f, h 1 = V(f) ,and the cavity shape as parameterized by

The axial mode number n has a minor influence.
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APPENDIX IV

Acceleration and Emittance Calculations

The exact electromagnetic cavity modes discussed earlier

determine the acceleration of relativistic particles shot into the cavity.

Three terms in the Lorentz force that need to be evaluated are:

dpl1
dt e Ell Z(t) exp - iwt , (la)

dp r
a-i, E = e Ei  (t exp - iwt (lb)

d- I, B = - eB.z (t) exp - iwt (lc)

the last term coming from Y x BIc = - eB The field should be

taken at the actual position of the particle, z = z(t) The

magnetic and electric fields are given as a product of two spheroidal wave

functions and their derivatives:

B = const. Rln (h,&) Sln (h,q) , (2a)

where h is the parameter

h = kf = _ (2b)2 2c

The electric field component EQ , roughly in the acceleration

S-I



direction along the z-axis, is

E 1 .Inj -i7B , (2c)

The field component E , roughly perpendicular to the z-axis, is

E - h B (2d)

These formulas give the exact fields in an ellipsoidal cavity once the

frequency, or h , has been determined from the radial boundary condition

EnI o 0

The particle trajectory is assumed to be exactly parallel to and

to pass through a narrow region about the z-axis Ii1 4 1 , = 1

The magnetic field B is always exactly perpendicular to the particle

direction. However, the electric field components En  and E are

exactly parallel resp. perpendicular to z at n = 0 only : for

n 0 the En  field has a small component in the C- direction

and vice versa. These components will be ignored to a first approximation;

henceforth E= E , and E= E

The energy transfer in the parallel direction Ap, gives

the accelerating energy AE = cap, , while the momentum transfer in

in the perpendicular direction, Api , produces the emittance. The

momentum transfers are the integrals ovor time of Equation 1, evaluated

along the particle orbit z = = ct, I u :
.2

A ie Ep N /d e ih Saln(h,))

5-2



41 ie E 2 )Edn eihn a Sl(h'n) (3b)SDIEv 14Tn-V 'r rln

e Ep NB() fd elihn Sn(h,n) (3c)

Here E is the peak electric field, and N , NI and
p

NB  are the normalization constants that connect the three fields:

They are

NJ, (M) = Nn  g n Rn(h,) (4a)

N1 (E) = NB(E) = Nn Rln(h, ) ; (4b)

These formulas all have the same normalizing factorr 1-'
N - In_ (hn Rln(h, (4c)
n max, [ I max,

where [Imax,x denotes the maximum of the function in brackets

with respect to x These factors are chosen such that the peak

electric field E is the single strength parameter.
P

The Fourier transforms in Equations (3) show various interesting

features: there is a 180 degree phase difference between Ap, and

Apj, , due to the factor -i resp. i , and a 90 degree

phase difference with Ap In addition there is an extra phase

factor from the initial position- z. = f%/2 Hence the complex

exponential exp - ihnl becomes exp - ih(n+n0) . The phase

no  should be such that the accelerator maximizes Ap, Since

5-3
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t
the functions S n(h,n) have a well-defined parity (odd for n even,

and vice versa) this maximization demands that

-i exp - ih(n+n) cos hn

when S is even in n , and sin hn for S odd; what is
in in

more, this replacement should be done in each of Equations (3). Let n

be odd, for the sake of argument. Then the exponential in (3a) and (3b)

becomes cos hn , but in (3c) sin h . Now the derivative a/3

in (3b) of an even function changes the parity to odd, hence, the integral

will vanish. Likewise, the integral in (3c) is over an even function

times an odd factor sin h , and this integral vanishes also.

Not all electrons enter the fields with exactly the correct

phase: the momentum transfer for an electron with phase angle rb

will be given by

"P1l [rib] = IA p,ll cos hnb , (Sa)

APL, E(nb ) = IAmPI,E sin hnb , (Sb)

pBb - LA PBI sin hnb (5c)

an angle factor times the absolute value of the momentum transfer, i.e.

the integrals (3) evaluated with the maximizing phase.

Notice that these considerations pertain only to the field

structure along n , and do not depend on the particle distance from

the z-axis: Its effect will come in-only through the factor N(Q) in

Equation (3).

5-4



The integrals in Equation (3) are, to our knowledge, not

expressible in closed form except in the limit h- -  Then the

spheroidal functions Sln becomes

Sln(h,n) , H n-I (rIJI-) exp- hn/2

and the factor (1-n 2 ) becomes simply unity.

Whence,

eE N1l(o) 21 r

API,= W iVh H n(/-I ) exp - h/2 (6a)

eE N( )
h-2 h Hn-i (V-) exp - h/2 (6b)

and

I=eE pN() 2C'-

p = E Hn 1 (/-h
-) exp - h/2 (6c)

The magnitude of the transverse momentum change is basically proportional

to the accelerator's energy gain. A small emittance, therefore, depends

crucially on the smallness of the inital phase nb , and on the

transverse bunch size &b through the normalization factors of

Equation (4).

Close to the cavity axis, i.e. 1 , Equation (4) can be

evaluated with the limiting form for the radial eigenfunctions

RIn(h.&)  near -1 . These are approximately, for large h ,

and

s-s
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V.-2

S _ I R(~ (b

where the radius r = f

The maximum in the radial dependence of parallel electric field

E takes place at the cavity axis, hence

[ I RlI(hi) max, = () (7c)

The normalization factors (4) are near the axis:

Nil S in (h,n)1 (8a)
II7 J maxx n

and

N1 = N r 1 (8b)

This gives for Equation 6:

r

AP11,E - P5  (8c)

It is satisfying that these results are so obvious; in fact, the

equivalent of Equation (8) has already been used to estimate the emittance.

The present analysis, therefore, adds the connection with the spheroidal

cavity modes, but no new insights. Perpendicular momentum transfer is
produced by the magnetic field BO , but mainly by the perpendicular

electron field E , on account of the additional, large, h in
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Equation (6b). Taking only APiE , the perpendicular momentum transfer

is for the edge of a small bunch (hb << I , hrb<< 1)

api = Apq 21r' (rb/%) (zb/X) (9)

The conclusion from Equation (9) is that the electron bunches

to be accelerated in the RF cavity should be very small compared to the

wavelength both in radius rb and axially zb Typical

dimensions would be 1% of a wavelength, in both r and z , for

1
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Energy Transfer From Cavity Modes

To Gaussian-Shaped Relativistic Charge Bunch

The energy transfer from cavity modes to a single particle was

calculated earlier. This section computes the energy transfer to a Gaussian

bunch of electrons. The bunch is assumed to be narrow in the radial direc-

tion, but it has a varying width along the cavity axis.

Two limiting cases are obvious: a bunch that is narrow compared

to the axial wavelength of the cavity modes looks like a single particle for

energy transfer purposes. On the other hand, a bunch that stretches over

a few axial wavelengths gets little energy transfer.

Relativistic motion of the particles precludes any shape changes

in the bunch. Therefore, the energy transfer can be calculated by averaging

over the particle density in the bunch,

nN 2 /22 2(0n( ) = N exp - /2cWa : (10)

here N is the number of bunch particles, C is the bunch coordinate

= z - ct, and a is the bunch width in terms of the waist size

w*X~h f X ) (11)W% f

the energy transfer from cavity mode n to a relativistic

particle at a phase angle so  wAtt - W/c with respect to the position of

maximum energy transfer, is
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AE(so) 0 AE cos sof (12a)

where

N n 7W 2n 1
A~E = (eE X)- (M exp -W(X--) .(12b)0 p n 2f

The energy transfer to the Gaussian bunch A b  is then

AE = - cos -!-- exp - 2 /2a2W2, (13a)

NAEo0 exp - 27 a2f/X (13b)

The energy transfer for a bunch is, of course, proportional to the energy

transfer per particle to the number of particles, times a shape factor. The

shape factor is a Gaussian due to the Gaussian bunch shape: an arbitrary

localized bunch will give another shape factor, dependent on the same para-

meter 2w a2 f/X. In any case, the energy transfer does not decrease too

much for

<. I /X -X/T' (14a)

The allowable bunch width oW is therefore

OLW < 2x (14b)

This result is very reasonable: a bunch width less than 1/6 of

the free space wavelength does not affect the energy transfer. Similar

results are obtained in the bunched electron accelerator PHERMEX.

5-9
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NUMERICAL EVALUATIONS AND CONCLUSIONS

The energy transfer from the exact cavity fields as computed

numerically deviated considerably from the value given by the Hermite-

Gaussian approximation. An exact formula for the energy transfer is

obtained as follows. Consider the differential equation

[.d (1-n2 ) d + X -h2 2 - 1 S(h,n) = 0 (15)

T) n 1 I-iWJ In'

multiply this by

T eihn/J7- , (16)

and integrate from n = -I to n = 1

Integration by parts gives

'(1-n)Sl n - T(l-n 2 ) SIn]

I In T d (17)

-1

The bracketed operator working on T simplifies considerably;

r 1 2 ih
SJT (1-n2)" (Xln-h 2 ) e (18)
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Therefore, the energy transfer integral is

S n(~)eihn 1
1 ( hh1 (19)
-I ) n2 Xn =In-ha

The term in square brackets should be evaluated in the limit il 1

In this limit the function Sln is

S1 (h,n) = Nln(l-2) k3h/2 (20)

where k3  for large h is found as (Slepian 196S)

-h n/2 (3n-l)/2
=k e h 2 irv (21)

and the normalization factor NIn is such that the maximum of SIn is

approximately unity:

N in n-)! 1r/2 (22)

The square brackets in (19), exclusive of the sinusoidal term, then become

simply Nn k3 h The energy transfer integral becomes, approximately,

(n+s)/2 3n/2 -h sin h /(X -h2) (23)

U JT(nl) I h 2 e cos In

(the sin-function should be chosen for n even, cos- for n odd).

This result should be used with caution, because the estimate for

the maximum value of SIn contains an additional constant of order unity,

S-li
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Moreover, the above formulas use only the first terms in the asymptotic

expansions. Figures 1-3 show some numerical results.

The frequency h as determined from the WKB-approximation to the

radial spheroidal wave function is given in Figure 1: In Figure l(a) the

axial mode number n I 1 , and the radial mode number parametrizing the

curves varies from Z = 1 to Z = 21 . The data are in general agreement

with the analytical estimate h % (Eo-1) -  (j"+...) .Figure l(b) given the

frequency but for n = 4 ; The frequency is higher as expected. The

frequencies are in good agreement with those found by using the exact radial

spheroidal wavefunction Rln

Figure 2 gives the parallel, and Figure 3 the perpendicular energy

transfer, Equation (6), for 1--nS5 as function of the cavity position

Eo  and parametrized by the radial mode number L . Here the energy

transfer is evaluated with Hermite-Gaussian approximation: Figure 2(a)

for n = 1 shows an energy transfer that increases linearly with 0

the transfer is very small for large Z , and appreciable for Z = 1 only.

For n = 4 , as in Figure 2(b), the story is different: Now the

energy transfer is good for R = 1 and >--2-- or so, and for larger X

the transfer increases, again linearly with &o , to reasonable values.

Figure 2(c) compares these data, obtained from the Hermite-

Gaussian approximation, with the exact formula (19) evaluated numerically.

Only data for a confocal cavity &o = V- are available at this moment:

the figure shows AEI/eEpX as function of axial mode number n , parametrized

by I . The surprise here is that the agreement is not uniformly good:

what is worse, the values from the Hermite-Gaussian approximation are too

high, by a large factor.

S-12
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Probable causes for this discrepancy are under investigation:

one possibility is indicated by the exponential factor exp(-h) in

Equation (23), versus exp(-h/2) in Equation (6), for h z 10 a factor of

order 100 The difference in exponential decay with h reflects the

unfortunate fact that the Hermite-Gaussian approximation is not good in its

"tails"; the axial spheroidal function falls off more rapidly as h in-

creases.
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Position EOfor axial mode number n =4.
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APPENDIX V

MISCELLANEOUS ON SPHEROIDAL FUNCTIONS

The properties of the spheroidal functions are less known that

those of the more common special functions. In this section various useful

formulas are given, asymptotic expansions are verified, etc.

Particularly useful sources are Meixner and Schafke (Reference 1),

and Flammer (Reference 2). Numerical data, and the computer code used by

us, were obtained by courtesy of Dr. A. L. Van Buren, NRL (References 3

and 4).
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Normalization

There are various normalizations in use. The one adopted by

some modern writers is Nfeixner's:

(h,n dq = 2 (n+m) !
[ 2n+l (n-m)!

This is equivalent to

S (on) = mn)Mn n

where P is a Legendre polynomial. The set Smn is complete:

f(x) = n=m 2n 1 (n+m)! f dt f(t) S mn(h,t) S mn(h,x)

In this report we do not use any of the standard normalization:

instead, the function that gives the electric field is normalized to unity

at its maximum.
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APPROXIMATION FOR RADIAL FUNCTION

The approximation for the radial function Rn (h,&) is

(Reference 1, Section 3.91)

W -1I R mn(h, E) (21h) (1,J Jm (s)()

where

s = h T- - arc cos 3 2 +3
2 6h " Vie - +2

Near the axis C-1

R1 (h,~lm (&2_1)1/2 X

2h 16yz ""

Here q = 2n-2m+ [-

The following figure gives a comparison between (&2_1 )11 RIn

and its approximation. For frequencies h of interest h ?10

the argument is extremely close. The figure shows a worst case, h = 10

and n = S The "exact" curve is the left side of Equation (1), the

curve marked "appr" is the right side, with s from Equation (2). The

dashed curve is the approximation (1), but neglecting the last term in s

Each function is normalized to the maximum.
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ASYMPTOTICS FOR AXIAL FUNCTION

The asymptotic expansion for large frequency h-mm- for

the angular function S mn(h,r is:

(1-n2) S mn(h,n) = Hn-m (n vh) exp - hn2/2

E a H (rT ' J) exp - hn2/2r=-00 r r

where k = n-m

and the coefficients a satisfy a five-term recursion system given e.g.r

in Reference 2, Section 8. The formulas are fairly unwieldy: The following

figure is a comparison between (1-n) -  Sln(hn) and Hn-l(nV' exp -hn/2

for two values h = 10 and 20 , and two values n = 2 and 4

The approximation is satisfactory for h = 20 and both

values of n ; although there are clear deviations for n = S

For lower frequency h = 10 the agreement is acceptable for n = 2

but bad for n = 5. Slepian (Ref. S) gives a more complete treatment of

the asymptotics in sFheroidal functions which, however, is fairly complicated.

The relation above should be reasonably good in the region Inj < h, but

no in the Gaussian "tails" where nr- >> 1.
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Comparison Between Exact and Approximate Axial

Spheroidal Wave Function for: h *20 n -S
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WKB Approximation for Axial Spheroidal Function

Quite often the WKB approximation is very reliable, especially for

the higher mode envisioned in the transverse RF accelerator. To our knowledge,

however, this approxmation has not been derived before for the spheroidal

functions. Consider the function

u n(h,n) = -Sn (h,n) ; (1)

it satisfies the Schroedinger equation

U" = Q (X,n)u , (2a)

where

Q= 1-r 2  (2b)

X is the eigenvalue for the spheroidal function, and h is the

frequency h = fw/2c

The WKB-approximation in the region between the turning points

nt = V7/h is

u = 2 (-Q) "  sin t dt / + / (3)

The integral can be done exactly in terms of incomplete Elliptic

integrals. Define the argument

A = -- t (4)
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Setting n = sin 8 , the integral becomes

6t

A = 1-nyl-r2sin 2 dO

V- [Eoton t  E(erti)] (S)

where t = arc sin t

The symbol E is the incomplete Elliptic integral, defined by

E(o,k) = f/lk2sin2o dO (6)

Notice that in Equation (5) the parameter rt- is greater

than unity. Existing tables are typically for parameter less than

unity. For computations, therefore, it may be necessary to use the formula

(AS 17.4.16)

ECUln2) = - 1 E(Unz,n 2) - (nt-l)U ,

where

~ECUm) odt
0

and x = sn U . Alternatively, the integral can be evaluated numerically

as it is needed.

The approximation for the spheroidal function Sln becomes,

between the turning points

Sln(h,n}  I- n2(ln2n) - sin(V A~n)+n/4) (7

6-10
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I
while the approximation for the derivative of /1q iln is

'
d -T JX cosNVX-A+T/4) (8)

In the intermediate region about the turning points, where the
2V^

"potential" is linear with slope - the approximation is in terms

of Airy functions: with

S In h,n) = (1-n 2 - 2s'/6 7t -/ 2 (1_X/ha2)1/6

Ai[1(iV 2 ) 1/3 (n-net] (9)

In the region outside the turning points' nt  the appropriate

formula is similar to (3):

U Q exp - Q dn (10)
't

The integral now becomes

n

f' dn = V57,de n 2sin2e-1 (11)

nt. t

it can also be written in terms of incomplete elliptic integrals, but that

will not be done here. Instead, direct numerical integration will be used

when necessary.

Even without exact evaluation of (11) some observations can be

made about the decay rate of Sln for n for outside the turning

point, nt  ,provided nt << I This is the case in which the
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Gaussian-Hermite approximation applies best. A comparison between the two

approximations should be revealing, especially because the functions occur

in the energy transfer efficiency. Slepian (Ref. S) has a third approximation,

different from the Gaussian-Hermite, in the region )nr Z h-1 ; this approxi-

mation should agree closely to the WKB expressions.
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APPENDIX VI

MISCELLANEOUS ON DEVICE PHYSICS

Current Limitation Revisited

Maxwell's equations allow a simple estimate for the loading of

the accelerator cavity by the beam current. Consider the equation

V X B = 1 &! +
c

The free cavity modes calculated earlier in terms of prolate spherical

functions follow from (1) by setting the term /A 0 to zero. If Iot j were
0-20

everywhere smaller than c - E/ at, or to its equivalent VxB, the presence

of the beam would scarcely influence the wave fields. Let us compare these

terms in an approximate fashion.

The electric field vector is in the same direction as the current

density. It is clearly negligible if

I $_ I (2)
C

Numerically, this means

<< 10 A/cm (3)

7-1
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for an accelerator field E 108 V/m and frequency v A 10Ghz.

21-

The constant current density can be spread out about the axis over an area

that depends on on the acceptable perpendicular momentum transfer, or

emittance. Typically, the beam electron can be a distance 4/20 from the

axis. Therefore, the current I is limited by

E_ 2
I << 10 A (3)

60/tov

for the given parameters. This current is rather small, however, for a

9 4
field E 10 V/m and v = 1Ghz the current limit already 10 A, and

currents 103A should be attainable with no problems.

Estimates of this type have been done previously, but based on

energy considerations, with the same results.
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APPENDIX VII

DIFFRACTION EFFECT ON MODE STRUCTURE

An integral equation for the spheroidal wave function is

(Flammer, 5.3.12)
I

1-n d ihrns

2 S n(h,n) R n(h,) = i Is e

in j J l- V SI hs 1
-I

Diffraction due to open cavity ends can be calculated approximately in such

an integral relation by changing the integration limits from (-1,1) to

(-r.,no) ,where n defines how large the cavity hole is.

Equation (1) for SIn can be simplified considerably by taking

a partial derivative 3/aC , and setting = I . This yields first

1 / ISSin --- in . s~J ehr~ y.is J [Snhs 2
-l

After multiplying by T2-I the limit E - 1 can be taken, with the

result

" i [-- I - -] S(hn) - Js e fi #7I * Sn(3)

-1

Nbte that the limit on the left is nonzero.
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This formula can be written in different ways. An extra factor

i-r2 gives
n-i .. d ihns

i A U (h,n) = -) ds e u (h,s) (4)nf J n
-1

where

U n(h,n) = 1-n 2 Sln (h,n) ,(5a)

and

1
A n- Rlnj 2

Comparing Equation (4) to the well-known analogue for the zero

order spheroidal function

n ih is
2i Ron(h,l) S on(h,n) e S on(h,s)ds (7)

-1

we note an extra factor (i-i 2 In addition the eigenfunction is not a

purely spheroidal function, but has an extra factor , to make it

the potential for the normal electric field

auOn (hn)
E &n " (8)

The interpretation of Equation (4) is then that the normal electric field

pattern on the cavity wall is reflected with the propagator (l-n2) exp ihns

8-2



Other forms of Equation (4) are:
1

n-i r-- d e( ihils
i An S in(h) ds 1s'SIn(h,s) ds (9)

-1

which would propagate the -component of the magnetic field, or

1

n-i ihns 1
Vn(h, T) = ds e -s )( -s V (h,s) (10)

nn

where

V (h,n) = S In)(hn)n 2_2

This operator propagates the parallel electric field

1.n  a Vn(h,n )  (12)

Mtice that Equation (10) seems to contain the cavity wall position

&o explicitly (not only through the frequency h ). However, the Equations

(4) and (9) show that this is not the case: the explicit Eo - dependence

is cancelled by the extra Eo hidden in V n(h,n) of Equation (11). Since

all three integral forms are equivalent any of these can be taken as a basis

for perturbation. On additional form can be obtained by setting 1 = in

in (10) and (11):

n- 1 n/ ihns 2
AVn(h,n )  ds e (1-s 2) V(h,s) (13a)

where

V . (13b)
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Diffraction effects on the cavity fields are calculated most

conveniently with Equation (9), by changing the integration limits from

(-I,I) to (-n obo ) . The wave structure in the open cavity x(h,n) is

now the eigenfunction of

110
n-I r-- ihnsr-
i B X(h,n) = s e I X(hs) , (14)

where B = B (n ) is the eigenvalue. ltice that B is purely real in the
no0

case no-- , B = An  , and that in this limit

X (h, n) = Xn(h, n; on - Sln(h, n)  ;(

Therefore X has the same number of zeroes and symmetry properties as SIn

even for n - 1 even, and vice versa.

For small An = I-n a the integration in (14) can be approximated

by subtracting the average value over the tail ends (-l,-0) and (n 0o)

from the standard integration interval (-1,1) in Equation (9). The

result is

-1

n-i 3/2 rycos. .
- 2i (An) X(hna) I- . (16)

Here cos(hnna) applies when n - 1 is odd; na is a average betweenaa
I and no  na =(In)/2 ,and An I=-no
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The perturbation term is proportional to (An , due to the

approximation of the square root under the integral. Also, the perturbation

has the same symmetry properties as the left side of (16), and the same
.n-lfactor i . Therefore this first order perturbation will not produce

an imaginary part in the eigenvalue B

Following straightforward perturbation theory the unknown

function X(h,n) can be expanded in a series of spheroidals:

X(h,) = a S n(h ) (17)
n31 n In

where the coefficients are given by

an = n(n+l} X(h,n) Sln(h,nl)dn . (18)
-I

The constant (n+ )/n(n+l) is appropriate to the Meixner normalization

of the spheroidal functions

dn (n "m) (19)

Smn (n h)(n-m)!

-I

Equation (16) becomes, after interchanging integration and

summation, and using the defining integral (9):

X(aB-aA +C) S (h,n) = 0 (20)

where

8-S
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a= 2k+l d .1 cos hnna Sln(h. ) (21)Cn a k(k+l) j sin
-1

Evaluation of X(h,) demands another series, but to lowest order

X(h,n) = S n(h,na) (22)

Since the S n's are orthogonal there follows

c
ln

a = n(23)n A -Bn

The perturbed eigenvalue B is obtained from approximating XCh,n) f XWhrn;na)

in Equation (18) by Sln(hi) Then a N = 1 and

B = A - c (24)
n n 0

For practical calculations the coefficients must be evaluated

but this is quite tedious. An alternative approach is to solve Equation (9)

directly by computer. A suitable algorithm is the interation of Equation (4).

Having found the fields as function of n inside the open cavity,

from a perturbation series or by iteration of Equation (14), it is straight-

forward to calculate the - dependent factor in the fields, RIn(h.&) .

The derivative of Equation (1) with respect to n , an extra multiplication

with Vr-qV " , and the limit n--11 yields

C In(~ I/ds e~ 1s 2 S~f (h,s) (25)
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in complete analogy to Equations (3) and (4). However, now the eigenvalue is

- 4i n-[ -n2 a (26)n rh "(26
lim 1-l

For an open cavity the C-dependent factor Y n(h,) is now deter-

mined by changing the integration limits in (25) from (-1,1) to (-n o').

It is not immediately obvious that this is the correct way to

find the s-dependence, but this algorithm is certainly reasonable: it

makes the field Ez continuous across the focal point n=l, E=l. To verify

the continuity one should remember that Ez along the axis has two distinct

forms,

E = E between foci
z n (27)

E = E outside the foci
z

The explicit expressions for En and E evaluated at n = = 1 then show

the continuity at this point.

The field, parallel to the cavity axis, Ez = E., evaluated on

the axis = 1 between the foci is:

E AS I (hO [I R R(h,]- (28)
_2
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Here A, which depends on the normalization of the various spheroidals is

a field strength parameter, whereto we shall return.

Inserting Equation (9), with the explicit value (3b) for its

coefficient A gives
n

(=l,n) = IA T .. h,) (29)

where

1

nT(h,n) = ds e ihsn -s2  Slnh,s)  (30)

-1

On the other hand, Ez = E outside the foci. On the axis (C=l, )

the field is explicitly

E h n 1-Rn Sn (h,q) (31)

Use of Equations (25) and (26) for the function RIn gives

E (,.r1ul) = - A0 Tr Sn Tn(h, ) (32)
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The field Ez is continuous across the focal point I = = n

provided that the constants in the square brackets are equal. This is

easily seen directly from the integral relations (9) and (25). Namely,

the square brackets do not depend on the normalization constants An and

Cn , but are simply functionals of Tn (h,n) and Tn (h,Q): and it is clear

from definition (30) that

T n(h,n - 1) = Tn (h, - 1) (33)

Moreover, this equality is true for all derivatives.

Numerical results are shown in Figure 1 and 2. Figure 1 is the

field along the z-axis for the case h = 6, n = 2, n between 0 and I, and

C from 1 to 3. The parameter is the size of the cavity opening, parametrized

by no as indicated. The fields for the closed cavity are concentrated most

between the foci, but as the cavity opens up the field pattern widens, and

RF leakage increases.

The coupling from RF fields to particles generally deteriorates

from opening the cavity. Figure 2 shows the coupling for the case h = 6, n -2

as function of cavity hole size no for the lowest three radial modes

Z = 1, 2 and 3. The coupling is not affected too much for the lowest mode

up to ro  0.8. The higher modes are more sensitive, to the point of

reversing the sign of the coupling constant.

The conclusion from the diffraction calculations is that the

cavity can be safely opened somewhat, e.g. up to no z 0.9, without too much
decrease in the coupling. However, there is no increase in coupling efficiency

by increasing leakage from the cavity.
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h 6
n 2

eE P

0.

0.00 3.0
2Z/f

Figure 1. The z-component of the electric field at
frequency h - 6, and axial mode number
n - 2, along the cavity axis for an open
cavity.

The parameter nj0  is

no 1 -0.05 m, m w 0 - 8 (except no 0.95).
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770

Figure 2. The coupling from RF fields to
relativistic particles as function
of the cavity opening for three
radial modes and h 3 6, n 2.
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